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SUMMARY: 
High-rise buildings are usually built in the urban center and are close to each other. The unfavorable interference 
effects may remarkably amplify their wind loads and dynamic responses. However, there is still a lack of reliable 
and accurate prediction models of interference factor (IF). To this end, machine-learning-based methods are adopted 
in this study to establish an accurate prediction model for the IF of two neighboring high buildings. 33150 
interference cases considering different interfered locations, reduced wind speeds and damping ratios are used in this 
study. Four ensemble machine learning methods, such as random forest, adaptive boosting, gradient boosting 
regression tree, and extreme gradient boosting (XGB), are utilized to attain the best performance of the prediction 
model. The collected data are randomly assigned into the training and test sets, and the optimal hyper-parameters are 
found based on the grid search method combined with 10-fold cross-validation. It is found that the XGB model has 
the best predictive performance with the highest coefficient of determination and lowest mean square error estimate. 
Shapley additive explanation method is also adopted to explain the importance and contribution of the factors that 
influence the IF to avoid the “black-box” problem hidden in the machine-learning methods. 
 
Keywords: Explainable machine learning; Wind-induced interference factor; High-rise building.  
 
 
1. INTRODUCTION 
Super high-rise buildings are often grouped in proximity in the metropolitan center. The mutual 
interference effects from adjacent buildings will inevitably magnify or suppress the aerodynamic 
forces and dynamic responses, which may lead to vortex-induced resonance or aerodynamic 
instabilities. Unfavorable interference effects would cause considerable threats to structural 
safety and occupant comfort. It is of great significance to understand the mutual interference 
effects of close-spaced high-rise buildings (Lo et al., 2020). 
 
The wind tunnel test still is the primary approach to investigate the interference effects at present. 
In the past several decades, numerous scholars have adopted various methodologies to 
investigate potential parameters influencing the interference effects, including turbulence 
intensities, relative locations, cross-section shapes, and aspect ratios. Xie and Gu (2007) utilized 
the high-frequency force balance technique (HFFB) to study the base-bending interference 
effects of grouped high-rise buildings, and linear regression equations were proposed to estimate 
the IF. In addition, some scholars also proposed empirical equations for assessing the IF factors. 



However, it should be emphasized that most equations are based on linear regression, while the 
complex and non-linear features of interference effects may not be revealed. Therefore, it is still 
desirably necessary to establish an accurate and reliable predictive model for IF. 
 
ML techniques have superior ability to describe and interpret complex and non-linear features 
between inputs and outputs. Several pioneers have successfully applied ML techniques to predict 
wind pressures, across-wind loads and responses, and other aspects (Hu et al., 2020). To our 
knowledge, no previous studies have focused on predicting IF using ML-based models. In 
addition, the “black-box” problem exists in many ML-based predictive models, and the 
relationships between inputs and outputs remain unclear. To this end, this study focuses on the 
explainable ML-based predictive model for accurately predicting the IF of two neighboring high-
rise buildings. SHAP (Shapley Additive exPlanations) is used to interpret the importance and 
contributions of influencing parameters in predicting the IF to avoid the “black-box” problem. 
 
 
2. OVERVIEW OF MACHINE LEARNING MODELS 
In this study, four typical ensemble machine learning methods, namely, random forest (RF), 
adaptive boosting (Adaboost), gradient boosting regression tree (GBRT), and extreme gradient 
boosting (XGB), are used to establish accurate prediction models (Lin et al., 2021). Ensemble 
methods combine the decisions of multiple weak learners to improve the overall predictive 
performance. According to the way of generation, the ensemble method can be clarified into two 
categories, parallel ensemble method (Bagging) and sequential ensemble method (Boosting). RF 
is a classical method of bagging. It consists of a large number of individual decision trees 
gathering in parallel as an ensemble. The final predictions are obtained by a deterministic 
averaging process of the ensemble. The basic idea of boosting methods is to generate a weak 
learner at each step and add it into the former ensemble. The residual is also fitted by the former 
ensemble and the generated weak learner to reduce the overall variance and bias. Adaboost, 
GBRT, and XGB belong to the classical boosting methods. 
 
 
3. DATABASE CONSTRUCTION FOR INTERFERENCE FACTOR 
 
3.1. Brief introduction of the wind tunnel test 
Wind tunnel tests were conducted at the TJ-1 boundary layer wind tunnel at the State Key 
Laboratory of Disaster Reduction in Civil Engineering, Tongji University. Turbulent boundary 
layer flow corresponding to category C in the Chinese code was simulated, and the measured 
results showed good agreement. A square-section prism with sizes of 0.07 m in width and depth 
and 0.63 m in height was adopted as the principal building, and its aspect ratio was 9. The 
interfering building was identical to the principal building in order to simplify any interfering 
factor. HFFB was adopted in this study to obtain the aerodynamic forces from the principal 
building. The sampling frequency and time duration were set as 1000 Hz and 100 s, respectively. 
The measured wind speed atop the building height was about 8 m/s. The natural frequency of the 
model-balance system was 70 Hz, which is much higher than the concerned frequency range of 
aerodynamic forces and can be eliminated by the signal filter. Only the oncoming wind flow 
normal to the face of the principal building was considered, and a total of 51 interference 
positions were investigated. The simulated wind profiles, interference position configurations, 
and photograph of the wind tunnel test are given in Fig. 1. 



   
(a) Simulated wind profiles (b) Interfered positions (c) Photographs 

 
Figure 1. Experimental setup of wind tunnel tests. 

 
3.2. Definition of interference factor 
The dynamic interference factor is adopted as the IF in this study and is defined as follows: 
𝐼𝐼𝐼𝐼 = 𝑅𝑅𝑅𝑅𝑅𝑅 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤𝑎𝑎𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎 (𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤𝑛𝑛 𝑟𝑟𝑎𝑎𝑤𝑤𝑎𝑎𝑝𝑝 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤𝑎𝑎)

𝑅𝑅𝑅𝑅𝑅𝑅 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤𝑎𝑎𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎 (𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤 𝑟𝑟𝑎𝑎𝑤𝑤𝑎𝑎𝑝𝑝) 
 (1) 

Based on the measured across-wind aerodynamic forces of the principal building, the RMS 
across-wind acceleration responses of interfering cases and isolated case under different reduced 
wind speeds 𝑈𝑈𝑅𝑅 (ranges from 3 to 15, with an increment of 0.5) and structural damping ratios ξ 
(ranges from 0.5% to 3%, with an increment of 0.1%) were calculated according to the random 
vibration theory (Chopra, 2007). The fundamental frequency was assumed as 0.1 Hz in prototype. 
 
3.2. Selection of variables and implementation  
The relative position (X and Y), 𝑈𝑈𝑅𝑅 and ξ were selected as input variables. Fig. 2(a) shows the 
correlation coefficient matrix. No distinct correlations were observed between the variables. The 
whole implementations were operated by Python 3.9, and the calibration of hyperparameters was 
realized by the Scikit-learn platform. The flowchart of this study is shown in Fig.2(b). 
 

  
(a) Correlation matrix of input- and output-

variables 
(b) Flowchart of the interpretable machine-learning-based 

prediction model. 
 

Figure 2. Workflow of the machine-learning-based predictive model. 
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4. MACHINE LEARNING BASED PREDICTION MODELS AND INTERPRETATIONS 
Among different ML-based predictive models, XGB based model has the best performance in 
predicting IF. Due to the limited space, the predicted IF results by the XGB-based model are 
presented in Fig.3(a). It is worth noting that most of the predicted IF results are located around 
the diagonal line (y=x), showing good agreement with the experimental data (𝑅𝑅2 = 0.99). 
Fig.3(b) gives the summary plots for IF based on SHAP. It is revealed that the factors 
influencing the interference effects ordered by importance are Y, X, 𝑈𝑈𝑅𝑅 and ξ, respectively. 
Specific position ranges (i.e., a specific range of X and Y coordinates) would remarkably 
amplify the IF. In contrast, the larger or lower X and Y coordinates have slight positive or 
negative effects on the IF. The relationship of 𝑈𝑈𝑅𝑅 with the IF is relatively complicated. The 
smaller ξ would have a positive effect on the IF. The detailed variation laws of the features with 
IF will be given in the dependency figure in the full-length paper. 
 

  
(a) Predicted IF results by XGB model. (b) Global importance factors based on SHAP. 

 
Figure 3. Machine-learning-based predictive model and interpretation. 

 
6. CONCLUSIONS 
ML-based techniques are adopted in this study to establish an accurate and reliable predictive 
model for IF. The predicted results show that all the ensemble methods have a good performance, 
while XGB performs best with the highest 𝑅𝑅2 (0.99). It is noted that the relative positions have 
a greater influence on the IF than 𝑈𝑈𝑅𝑅 or ξ, and the interference effects are more sensitive to the 
interfered buildings in the Y direction rather than in the X direction. Due to the limited space, 
further discussions of interference effects will be presented in the full-length paper. 
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